Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 334-339, 2022.
Article in English | WPRIM | ID: wpr-937235

ABSTRACT

Peroxiredoxin 6 (PRDX6) is a bifunctional protein with both glutathione peroxidase and calcium-independent phospholipase activity. Recently, we reported that PRDX6 plays an important role in dopaminergic neurodegeneration in Parkinson’s disease.However, the relationship between PRDX6 function and emotional behavior remains elusive. In the present study, we examined depression- and anxiety-like behaviors in PRDX6-overexpressing transgenic (PRDX6-Tg) mice using the forced swim test, tail suspension test, open field paradigm, and elevated plus-maze. PRDX6-Tg mice exhibited depression-like behaviors and low anxiety. In particular, female PRDX6-Tg mice exhibited anxiolytic behavior in the open field test. Furthermore, the serotonin content in the cortex and 5-hydroxytryptophan-induced head twitch response were both reduced in PRDX6-Tg mice. Interestingly, levels of dopa decarboxylase expression in the cortex were decreased in male PRDX6-Tg mice but not in female mice. Our findings provide novel insights into the role of PRDX6 in 5-HT synthesis and suggest that PRDX6 overexpression can induce depression-like behaviors via downregulation of the serotonergic neuronal system.

2.
Biomolecules & Therapeutics ; : 357-362, 2019.
Article in English | WPRIM | ID: wpr-763028

ABSTRACT

Limonene is a cyclic terpene found in citrus essential oils and inhibits methamphetamine-induced locomotor activity. Drug dependence is a severe neuropsychiatric condition that depends in part on changes in neurotransmission and neuroadaptation, induced by exposure to recreational drugs such as morphine and methamphetamine. In this study, we investigated the effects of limonene on the psychological dependence induced by drug abuse. The development of sensitization, dopamine receptor supersensitivity, and conditioned place preferences in rats was measured following administration of limonene (10 or 20 mg/kg) and methamphetamine (1 mg/kg) for 4 days. Limonene inhibits methamphetamine-induced sensitization to locomotor activity. Expression of dopamine receptor supersensitivity induced by apomorphine, a dopamine receptor agonist, was significantly reduced in limonene-pretreated rats. However, there was no significant difference in methamphetamine-induced conditioned place preferences between the limonene and control groups. These results suggest that limonene may ameliorate drug addiction-related behaviors by regulating postsynaptic dopamine receptor supersensitivity.


Subject(s)
Animals , Rats , Apomorphine , Citrus , Dopamine Agonists , Dopamine , Methamphetamine , Morphine , Motor Activity , Oils, Volatile , Receptors, Dopamine , Illicit Drugs , Substance-Related Disorders , Synaptic Transmission
3.
Biomolecules & Therapeutics ; : 659-664, 2017.
Article in English | WPRIM | ID: wpr-131552

ABSTRACT

Although lisdexamfetamine is used as a recreational drug, little research exists regarding its potential for dependence or its precise mechanisms of action. This study aims to evaluate the psychoactivity and dependence profile of lisdexamfetamine using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques are used to assess alterations in the dopamine levels in striatal synaptosomes following administration of lisdexamfetamine. Lisdexamfetamine increased both conditioned place preference and self-administration. Moreover, after administration of the lisdexamfetamine, dopamine levels in the striatal synaptosomes were significantly increased. Although some modifications should be made to the analytical methods, performing high performance liquid chromatography studies on synaptosomes can aid in predicting dependence liability when studying new psychoactive substances in the future. Collectively, lisdexamfetamine has potential for dependence possible via dopaminergic pathway.


Subject(s)
Chromatography, Liquid , Dopamine , In Vitro Techniques , Lisdexamfetamine Dimesylate , Rodentia , Synaptosomes
4.
Biomolecules & Therapeutics ; : 659-664, 2017.
Article in English | WPRIM | ID: wpr-131549

ABSTRACT

Although lisdexamfetamine is used as a recreational drug, little research exists regarding its potential for dependence or its precise mechanisms of action. This study aims to evaluate the psychoactivity and dependence profile of lisdexamfetamine using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques are used to assess alterations in the dopamine levels in striatal synaptosomes following administration of lisdexamfetamine. Lisdexamfetamine increased both conditioned place preference and self-administration. Moreover, after administration of the lisdexamfetamine, dopamine levels in the striatal synaptosomes were significantly increased. Although some modifications should be made to the analytical methods, performing high performance liquid chromatography studies on synaptosomes can aid in predicting dependence liability when studying new psychoactive substances in the future. Collectively, lisdexamfetamine has potential for dependence possible via dopaminergic pathway.


Subject(s)
Chromatography, Liquid , Dopamine , In Vitro Techniques , Lisdexamfetamine Dimesylate , Rodentia , Synaptosomes
5.
Biomolecules & Therapeutics ; : 266-271, 2017.
Article in English | WPRIM | ID: wpr-160704

ABSTRACT

Synthetic cannabinoids are one of most abused new psychoactive substances. The recreational use of abused drug has aroused serious concerns about the consequences of these drugs on infection. However, the effects of synthetic cannabinoid on resistance to tetanus toxin are not fully understood yet. In the present study, we aimed to determine if the administration of synthetic cannabinoids increase the susceptibility to tetanus toxin-induced motor behavioral deficit and functional changes in cerebellar neurons in mice. Furthermore, we measured T lymphocytes marker levels, such as CD8 and CD4 which against tetanus toxin. JWH-210 administration decreased expression levels of T cell activators including cluster of differentiation (CD) 3ε, CD3γ, CD74p31, and CD74p41. In addition, we demonstrated that JWH-210 induced motor impairment and decrement of vesicle-associated membrane proteins 2 levels in the cerebellum of mice treated with tetanus toxin. Furthermore, cerebellar glutamatergic neuronal homeostasis was hampered by JWH-210 administration, as evidenced by increased glutamate concentration levels in the cerebellum. These results suggest that JWH-210 may increase the vulnerability to tetanus toxin via the regulation of immune function.


Subject(s)
Animals , Mice , Cannabinoids , Cerebellar Diseases , Cerebellum , Glutamic Acid , Homeostasis , Immunosuppression Therapy , Neurons , R-SNARE Proteins , T-Lymphocytes , Tetanus , Tetanus Toxin
6.
Biomolecules & Therapeutics ; : 288-295, 2017.
Article in English | WPRIM | ID: wpr-160701

ABSTRACT

The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with 20 μM bosentan+200 μM rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.


Subject(s)
Humans , Cytochrome P-450 CYP2C9 , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Cytochromes , Gene Expression , HEK293 Cells , Hepatocytes , In Vitro Techniques , Incidence , Organic Anion Transporters , Polypharmacy , Rifampin
7.
Biomolecules & Therapeutics ; : 597-603, 2015.
Article in English | WPRIM | ID: wpr-192178

ABSTRACT

Synthetic cannabinoids JWH-018 and JWH-250 in 'herbal incense' also called 'spice' were first introduced in many countries. Numerous synthetic cannabinoids with similar chemical structures emerged simultaneously and suddenly. Currently there are not sufficient data on their adverse effects including neurotoxicity. There are only anecdotal reports that suggest their toxicity. In the present study, we evaluated the neurotoxicity of two synthetic cannabinoids (JWH-081 and JWH-210) through observation of various behavioral changes and analysis of histopathological changes using experimental mice with various doses (0.1, 1, 5 mg/kg). In functional observation battery (FOB) test, animals treated with 5 mg/kg of JWH-081 or JWH-210 showed traction and tremor. Their locomotor activities and rotarod retention time were significantly (p<0.05) decreased. However, no significant change was observed in learning or memory function. In histopathological analysis, neural cells of the animals treated with the high dose (5 mg/kg) of JWH-081 or JWH-210 showed distorted nuclei and nucleus membranes in the core shell of nucleus accumbens, suggesting neurotoxicity. Our results suggest that JWH-081 and JWH-210 may be neurotoxic substances through changing neuronal cell damages, especially in the core shell part of nucleus accumbens. To confirm our findings, further studies are needed in the future.


Subject(s)
Animals , Mice , Cannabinoids , Learning , Membranes , Memory , Motor Activity , Neurons , Nucleus Accumbens , Traction , Tremor
8.
Biomolecules & Therapeutics ; : 386-389, 2015.
Article in English | WPRIM | ID: wpr-180150

ABSTRACT

Sibutramine is an anorectic that has been banned since 2010 due to cardiovascular safety issues. However, counterfeit drugs or slimming products that include sibutramine are still available in the market. It has been reported that illegal sibutramine-contained pharmaceutical products induce cardiovascular crisis. However, the mechanism underlying sibutramine-induced cardiovascular adverse effect has not been fully evaluated yet. In this study, we performed cardiovascular safety pharmacology studies of sibutramine systemically using by hERG channel inhibition, action potential duration, and telemetry assays. Sibutramine inhibited hERG channel current of HEK293 cells with an IC50 of 3.92 muM in patch clamp assay and increased the heart rate and blood pressure (76 Deltabpm in heart rate and 51 DeltammHg in blood pressure) in beagle dogs at a dose of 30 mg/kg (per oral), while it shortened action potential duration (at 10 muM and 30 muM, resulted in 15% and 29% decreases in APD50, and 9% and 17% decreases in APD90, respectively) in the Purkinje fibers of rabbits and had no effects on the QTc interval in beagle dogs. These results suggest that sibutramine has a considerable adverse effect on the cardiovascular system and may contribute to accurate drug safety regulation.


Subject(s)
Animals , Dogs , Rabbits , Action Potentials , Blood Pressure , Cardiovascular System , Counterfeit Drugs , Heart Rate , HEK293 Cells , Inhibitory Concentration 50 , Pharmaceutical Preparations , Pharmacology , Purkinje Fibers , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL